Title: | Fast Relative Comparisons of Floating Point Numbers in 'C++' |
---|---|
Description: | Compare double-precision floating point vectors using relative differences. All equality operations are calculated using 'cpp11'. |
Authors: | Nick Christofides [aut, cre] |
Maintainer: | Nick Christofides <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.3.0.9000 |
Built: | 2025-01-12 05:51:39 UTC |
Source: | https://github.com/nicchr/cppdoubles |
Fast and efficient methods for comparing floating point numbers using relative differences.
x %~==% y x %~>=% y x %~>% y x %~<=% y x %~<% y double_equal( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) ) double_gte( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) ) double_gt( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) ) double_lte( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) ) double_lt( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) )
x %~==% y x %~>=% y x %~>% y x %~<=% y x %~<% y double_equal( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) ) double_gte( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) ) double_gt( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) ) double_lte( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) ) double_lt( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)) )
x |
A double vector. |
y |
A double vector. |
tol |
A double vector of tolerances. |
When either x[i]
or y[i]
contain a number very close to zero,
absolute differences are used, otherwise relative differences are used.
The output of double_equal()
is commutative,
which means the order of arguments don't matter
whereas this is not the case for all.equal.numeric()
.
The calculation is done in C++ and is quite efficient. Recycling follows the usual R rules and is done without allocating additional memory.
A logical vector.
library(cppdoubles) ### Basic usage ### # Standard equality operator sqrt(2)^2 == 2 # approximate equality operator sqrt(2)^2 %~==% 2 sqrt(2)^2 %~>=% 2 sqrt(2)^2 %~<=% 2 sqrt(2)^2 %~>% 2 sqrt(2)^2 %~<% 2 # Alternatively double_equal(2, sqrt(2)^2) double_gte(2, sqrt(2)^2) double_lte(2, sqrt(2)^2) double_gt(2, sqrt(2)^2) double_lt(2, sqrt(2)^2) rel_diff(1, 1 + 2e-10) double_equal(1, 1 + 2e-10, tol = sqrt(.Machine$double.eps)) double_equal(1, 1 + 2e-10, tol = 1e-10) # Optionally set a threshold for all comparison options(cppdoubles.tolerance = 1e-10) double_equal(1, 1 + 2e-10) # Floating point errors magnified example x1 <- 1.1 * 100 * 10^200 x2 <- 110 * 10^200 abs_diff(x1, x2) # Large absolute difference rel_diff(x1, x2) # Very small relative difference as expected double_equal(x1, x2) # all.equal is not commutative but double_equal is all.equal(10^-8, 2 * 10^-8) all.equal(2 * 10^-8, 10^-8) double_equal(10^-8, 2 * 10^-8) double_equal(2 * 10^-8, 10^-8) # All comparisons are vectorised and recycled double_equal(sqrt(1:10), sqrt(1:5), tol = c(-Inf, 1e-10, Inf)) # One can check for whole numbers like so whole_number <- function(x, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps))){ double_equal(x, round(x)) } whole_number(seq(-5, 5, 0.25))
library(cppdoubles) ### Basic usage ### # Standard equality operator sqrt(2)^2 == 2 # approximate equality operator sqrt(2)^2 %~==% 2 sqrt(2)^2 %~>=% 2 sqrt(2)^2 %~<=% 2 sqrt(2)^2 %~>% 2 sqrt(2)^2 %~<% 2 # Alternatively double_equal(2, sqrt(2)^2) double_gte(2, sqrt(2)^2) double_lte(2, sqrt(2)^2) double_gt(2, sqrt(2)^2) double_lt(2, sqrt(2)^2) rel_diff(1, 1 + 2e-10) double_equal(1, 1 + 2e-10, tol = sqrt(.Machine$double.eps)) double_equal(1, 1 + 2e-10, tol = 1e-10) # Optionally set a threshold for all comparison options(cppdoubles.tolerance = 1e-10) double_equal(1, 1 + 2e-10) # Floating point errors magnified example x1 <- 1.1 * 100 * 10^200 x2 <- 110 * 10^200 abs_diff(x1, x2) # Large absolute difference rel_diff(x1, x2) # Very small relative difference as expected double_equal(x1, x2) # all.equal is not commutative but double_equal is all.equal(10^-8, 2 * 10^-8) all.equal(2 * 10^-8, 10^-8) double_equal(10^-8, 2 * 10^-8) double_equal(2 * 10^-8, 10^-8) # All comparisons are vectorised and recycled double_equal(sqrt(1:10), sqrt(1:5), tol = c(-Inf, 1e-10, Inf)) # One can check for whole numbers like so whole_number <- function(x, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps))){ double_equal(x, round(x)) } whole_number(seq(-5, 5, 0.25))
A memory-efficient alternative to all.equal.numeric()
.
all_equal( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)), na.rm = FALSE )
all_equal( x, y, tol = getOption("cppdoubles.tolerance", sqrt(.Machine$double.eps)), na.rm = FALSE )
x |
A double vector. |
y |
A double vector. |
tol |
A double vector of tolerances. |
na.rm |
Should |
all_equal
compares each pair of
double-precision floating point numbers
in the same way as double_equal
.
If any numbers differ, the algorithm breaks immediately,
which can offer significant speed when there are differences at
the start of a vector.
All arguments are recycled except na.rm
.
A logical vector of length 1.
The result should match all(double_equal(x, y))
, including the way
NA
values are handled.
library(cppdoubles) library(bench) x <- seq(0, 1, 0.2) y <- sqrt(x)^2 all_equal(x, y) # Comparison to all.equal z <- runif(10^4, 1, 100) ones <- rep(1, length(z)) mark(base = isTRUE(all.equal(z, z)), cppdoubles = all_equal(z, z), iterations = 100) mark(base = isTRUE(all.equal(z, ones)), cppdoubles = all_equal(z, ones), iterations = 100)
library(cppdoubles) library(bench) x <- seq(0, 1, 0.2) y <- sqrt(x)^2 all_equal(x, y) # Comparison to all.equal z <- runif(10^4, 1, 100) ones <- rep(1, length(z)) mark(base = isTRUE(all.equal(z, z)), cppdoubles = all_equal(z, z), iterations = 100) mark(base = isTRUE(all.equal(z, ones)), cppdoubles = all_equal(z, ones), iterations = 100)
Calculate absolute differences with abs_diff()
and
relative differences with rel_diff()
rel_diff(x, y) abs_diff(x, y)
rel_diff(x, y) abs_diff(x, y)
x |
A double vector. |
y |
A double vector. |
A numeric vector.