
Package: cheapr (via r-universe)
November 6, 2024

Title Simple Functions to Save Time and Memory

Version 0.9.9.9000

Maintainer Nick Christofides <nick.christofides.r@gmail.com>

Description Fast and memory-efficient (or 'cheap') tools to facilitate
efficient programming, saving time and memory. It aims to
provide 'cheaper' alternatives to common base R functions, as
well as some additional functions.

License MIT + file LICENSE

BugReports https://github.com/NicChr/cheapr/issues

Depends R (>= 3.5.0)

Imports collapse (>= 2.0.0)

Suggests bench, data.table, testthat (>= 3.0.0)

LinkingTo cpp11

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Repository https://nicchr.r-universe.dev

RemoteUrl https://github.com/nicchr/cheapr

RemoteRef HEAD

RemoteSha b66e7d19d72486a516eed8e26a688f047dc90acd

Contents
cheapr-package . 2
as_discrete . 3
bin . 5
case . 6
cheapr_if_else . 7
factor_ . 8

1

https://github.com/NicChr/cheapr/issues

2 cheapr-package

gcd . 11
get_breaks . 13
is_na . 15
lag_ . 17
lengths_ . 21
named_list . 22
new_df . 23
overview . 23
recycle . 25
sequence_ . 26
setdiff_ . 28
set_abs . 31
sset . 33
val_count . 35
which_ . 37

Index 38

cheapr-package cheapr: Simple Functions to Save Time and Memory

Description

In this package, ’cheap’ means fast and efficient.

cheapr aims to provide a set of functions for programmers to write cheaper code, saving time and
memory.

Author(s)

Maintainer: Nick Christofides <nick.christofides.r@gmail.com> (ORCID)

See Also

Useful links:

• Report bugs at https://github.com/NicChr/cheapr/issues

https://orcid.org/0000-0002-9743-7342
https://github.com/NicChr/cheapr/issues

as_discrete 3

as_discrete Turn continuous data into discrete bins

Description

This is a cheapr version of cut.numeric() which is more efficient and prioritises pretty-looking
breaks by default through the use of get_breaks(). Out-of-bounds values can be included naturally
through the include_oob argument. Left-closed (right-open) intervals are returned by default in
contrast to cut’s default right-closed intervals. Furthermore there is flexibility in formatting the
interval bins, allowing the user to specify formatting functions and symbols for the interval close
and open symbols.

Usage

as_discrete(x, ...)

S3 method for class 'numeric'
as_discrete(
x,
breaks = if (left_closed) get_breaks(x) else cheapr_rev(-get_breaks(-x)),
left_closed = TRUE,
include_endpoint = FALSE,
include_oob = FALSE,
ordered = FALSE,
intv_start_fun = prettyNum,
intv_end_fun = prettyNum,
intv_closers = c("[", "]"),
intv_openers = c("(", ")"),
intv_sep = ",",
inf_label = NULL,
...

)

S3 method for class 'integer64'
as_discrete(x, ...)

Arguments

x A numeric vector.

... Extra arguments passed onto methods.

breaks Break-points. The default option creates pretty looking breaks. Unlike cut(),
the breaks arg cannot be a number denoting the number of breaks you want. To
generate breakpoints this way use get_breaks().

left_closed Left-closed intervals or right-closed intervals?
include_endpoint

Include endpoint? Default is FALSE.

4 as_discrete

include_oob Include out-of-bounds values? Default is FALSE. This is equivalent to breaks
= c(breaks, Inf) or breaks = c(-Inf, breaks) when left_closed = FALSE.
If include_endpoint = TRUE, the endpoint interval is prioritised before the out-
of-bounds interval. This behaviour cannot be replicated easily with cut(). For
example, these 2 expressions are not equivalent:

cut(10, c(9, 10, Inf), right = F, include.lowest = T) !=
as_discrete(10, c(9, 10), include_endpoint = T, include_oob = T)

ordered Should result be an ordered factor? Default is FALSE.

intv_start_fun Function used to format interval start points.

intv_end_fun Function used to format interval end points.

intv_closers A length 2 character vector denoting the symbol to use for closing either left or
right closed intervals.

intv_openers A length 2 character vector denoting the symbol to use for opening either left or
right closed intervals.

intv_sep A length 1 character vector used to separate the start and end points.

inf_label Label to use for intervals that include infinity. If left NULL the Unicode infinity
symbol is used.

Value

A factor of discrete bins (intervals of start/end pairs).

See Also

bin get_breaks

Examples

library(cheapr)

`as_discrete()` is very similar to `cut()`
but more flexible as it allows you to supply
formatting functions and symbols for the discrete bins

Here is an example of how to use the formatting functions to
categorise age groups nicely

ages <- 1:100

age_group <- function(x, breaks){
age_groups <- as_discrete(
x,
breaks = breaks,
intv_sep = "-",
intv_end_fun = function(x) x - 1,
intv_openers = c("", ""),
intv_closers = c("", ""),

bin 5

include_oob = TRUE,
ordered = TRUE

)

Below is just renaming the last age group

lvls <- levels(age_groups)
n_lvls <- length(lvls)
max_ages <- paste0(max(breaks), "+")
attr(age_groups, "levels") <- c(lvls[-n_lvls], max_ages)
age_groups

}

age_group(ages, seq(0, 80, 20))
age_group(ages, seq(0, 25, 5))
age_group(ages, 5)

To closely replicate `cut()` with `as_discrete()` we can use the following

cheapr_cut <- function(x, breaks, right = TRUE,
include.lowest = FALSE,
ordered.result = FALSE){

if (length(breaks) == 1){
breaks <- get_breaks(x, breaks, pretty = FALSE)
adj <- diff(range(breaks)) * 0.001
breaks[1] <- breaks[1] - adj
breaks[length(breaks)] <- breaks[length(breaks)] + adj

}
as_discrete(x, breaks, left_closed = !right,

include_endpoint = include.lowest,
ordered = ordered.result,
intv_start_fun = function(x) formatC(x, digits = 3, width = 1),
intv_end_fun = function(x) formatC(x, digits = 3, width = 1))

}

x <- rnorm(100)
cheapr_cut(x, 10)
identical(cut(x, 10), cheapr_cut(x, 10))

bin A sometimes cheaper but argument richer alternative to .bincode()

Description

When x is an integer vector, bin() is cheaper than .bincode() as no coercion to a double vector
occurs. This alternative also has more arguments that allow you to return the start values of the
binned vector, as well as including out-of-bounds intervals.

6 case

Usage

bin(
x,
breaks,
left_closed = TRUE,
include_endpoint = FALSE,
include_oob = FALSE,
codes = TRUE

)

Arguments

x A numeric vector.

breaks A numeric vector of breaks.

left_closed Should intervals be left-closed (and right-open)? Default is TRUE. If FALSE they
are left-open (and right-closed).

include_endpoint

Equivalent to include.lowest in ?.bincode.

include_oob Should out-of-bounds interval be included? Default is FALSE. This is the equiv-
alent of adding Inf as the last value of the breaks, or -Inf as the first value
of the breaks if left_closed = FALSE. When TRUE, this essentially becomes
findInterval().

codes Should an integer vector indicating which bin the values fall into be returned?
Default is TRUE. If FALSE the start values of the respective bin intervals are re-
turned, i.e the corresponding breaks.

Value

Either an integer vector of codes indicating which bin the values fall into, or the start of the intervals
for which each value falls into.

See Also

get_breaks as_discrete

case A cheapr case-when and switch

Description

case and val_match are cheaper alternatives to dplyr::case_when and dplyr::case_match re-
spectively.

cheapr_if_else 7

Usage

case(..., .default = NULL)

val_match(.x, ..., .default = NULL)

Arguments

... Logical expressions or scalar values in the case of val_match.

.default Catch-all value or vector.

.x Vector used to switch values.

Details

val_match() is a very efficient special case of the case() function when all lhs expressions are
scalars, i.e. length-1 vectors. RHS expressions can be vectors the same length as .x. The below 2
expressions are equivalent.

val_match(
x,
1 ~ "one",
2 ~ "two",
.default = "Unknown"
)

case(
x == 1 ~ "one",
x == 2 ~ "two",
.default = "Unknown"
)

Value

A vector the same length as .x or same length as the first condition in the case of case, unless the
condition length is smaller than the rhs, in which case the length of the rhs is used.

See Also

cheapr_if_else

cheapr_if_else Cheaper version of ifelse()

Description

Cheaper version of ifelse()

8 factor_

Usage

cheapr_if_else(condition, true, false, na = false[NA_integer_])

Arguments

condition logical A condition which will be used to evaluate the if else operation.

true Value(s) to replace TRUE instances.

false Value(s) to replace FALSE instances.

na Catch-all value(s) to replace all other instances, where is.na(condition).

Value

A vector the same length as condition, using a common type between true, false and default.

See Also

case val_match

factor_ A cheaper version of factor() along with cheaper utilities

Description

A fast version of factor() using the collapse package.

There are some additional utilities, most of which begin with the prefix ’levels_’, such as as_factor()
which is an efficient way to coerce both vectors and factors, levels_factor() which returns the
levels of a factor, as a factor, levels_used() which returns the used levels of a factor, levels_unused()
which returns the unused levels of a factor, levels_add() adds the specified levels onto the exist-
ing levels, levels_rm() removes the specified levels, levels_add_na() which adds an explicit
NA level, levels_drop_na() which drops the NA level, levels_drop() which drops unused fac-
tor levels, levels_rename() for renaming levels, levels_lump() which returns top n levels and
lumps all others into the same category,
levels_count() which returns the counts of each level, and finally levels_reorder() which
reorders the levels of x based on y using the ordered median values of y for each level.

Usage

factor_(
x = integer(),
levels = NULL,
order = TRUE,
na_exclude = TRUE,
ordered = is.ordered(x)

)

factor_ 9

as_factor(x)

levels_factor(x)

levels_used(x)

levels_unused(x)

used_levels(x)

unused_levels(x)

levels_rm(x, levels)

levels_add(x, levels, where = c("last", "first"))

levels_add_na(x, name = NA, where = c("last", "first"))

levels_drop_na(x)

levels_drop(x)

levels_reorder(x, order_by, decreasing = FALSE)

levels_rename(x, ..., .fun = NULL)

levels_lump(
x,
n,
prop,
other_category = "Other",
ties = c("min", "average", "first", "last", "random", "max")

)

levels_count(x)

Arguments

x A vector.

levels Optional factor levels.

order Should factor levels be sorted? Default is TRUE. It typically is faster to set this
to FALSE, in which case the levels are sorted by order of first appearance.

na_exclude Should NA values be excluded from the factor levels? Default is TRUE.

ordered Should the result be an ordered factor?

where Where should NA level be placed? Either first or last.

name Name of NA level.

order_by A vector to order the levels of x by using the medians of order_by.

10 factor_

decreasing Should the reordered levels be in decreasing order? Default is FALSE.

... Key-value pairs where the key is the new name and value is the name to replace
that with the new name. For example levels_rename(x, new = old) replaces
the level "old" with the level "new".

.fun Renaming function applied to each level.

n Top n number of levels to calculate.

prop Top proportion of levels to calculate. This is a proportion of the total unique
levels in x.

other_category Name of ’other’ category.

ties Ties method to use. See ?rank.

Details

This operates similarly to collapse::qF().
The main difference internally is that collapse::funique() is used and therefore s3 methods can
be written for it.
Furthermore, for date-times factor_ differs in that it differentiates all instances in time whereas
factor differentiates calendar times. Using a daylight savings example where the clocks go back:
factor(as.POSIXct(1729984360, tz = "Europe/London") + 3600 *(1:5)) produces 4 levels whereas
factor_(as.POSIXct(1729984360, tz = "Europe/London") + 3600 *(1:5)) produces 5 levels.

levels_lump() is a cheaper version of forcats::lump_n() but returns levels in order of highest
frequency to lowest. This can be very useful for plotting.

Value

A factor or character in the case of levels_used and levels_unused. levels_count returns
a data frame of counts and proportions for each level.

Examples

library(cheapr)

x <- factor_(sample(letters[sample.int(26, 10)], 100, TRUE), levels = letters)
x
Used/unused levels

levels_used(x)
levels_unused(x)

Drop unused levels
levels_drop(x)

Top 3 letters by by frequency
lumped_letters <- levels_lump(x, 3)
levels_count(lumped_letters)

To remove the "other" category, use `levels_rm()`

levels_count(levels_rm(lumped_letters, "Other"))

gcd 11

We can use levels_lump to create a generic top n function for non-factors too

get_top_n <- function(x, n){
f <- levels_lump(factor_(x, order = FALSE), n = n)
levels_count(f)

}

get_top_n(x, 3)

A neat way to order the levels of a factor by frequency
is the following:

levels(levels_lump(x, prop = 1)) # Highest to lowest
levels(levels_lump(x, prop = -1)) # Lowest to highest

gcd Greatest common divisor and smallest common multiple

Description

Fast greatest common divisor and smallest common multiple using the Euclidean algorithm.

gcd() returns the greatest common divisor.
scm() returns the smallest common multiple.
gcd2() is a vectorised binary version of gcd.
scm2() is a vectorised binary version of scm.

Usage

gcd(
x,
tol = sqrt(.Machine$double.eps),
na_rm = TRUE,
round = TRUE,
break_early = TRUE

)

scm(x, tol = sqrt(.Machine$double.eps), na_rm = TRUE)

gcd2(x, y, tol = sqrt(.Machine$double.eps), na_rm = TRUE)

scm2(x, y, tol = sqrt(.Machine$double.eps), na_rm = TRUE)

Arguments

x A numeric vector.

tol Tolerance. This must be a single positive number strictly less than 1.

12 gcd

na_rm If TRUE the default, NA values are ignored.

round If TRUE the output is rounded as round(gcd, digits) where digits is ceiling(abs(log10(tol)))
+ 1.
This can potentially reduce floating point errors on further calculations.
The default is TRUE.

break_early This is experimental and applies only to floating-point numbers. When TRUE the
algorithm will end once gcd > 0 && gcd < 2 * tol. This can offer a tremendous
speed improvement. If FALSE the algorithm finishes once it has gone through all
elements of x. The default is TRUE.
For integers, the algorithm always breaks early once gcd > 0 && gcd <= 1.

y A numeric vector.

Details

Method:

GCD (Greatest Common Divisor):
The GCD is calculated using a binary function that takes input GCD(gcd, x[i + 1]) where the
output of this function is passed as input back into the same function iteratively along the length
of x. The first gcd value is x[1].
Zeroes are handled in the following way:
GCD(0, 0) = 0
GCD(a, 0) = a

This has the nice property that zeroes are essentially ignored.

SCM (Smallest Common Multiple):
This is calculated using the GCD and the formula is:
SCM(x, y) = (abs(x) / GCD(x, y)) * abs(y)
If you want to calculate the gcd & lcm for 2 values or across 2 vectors of values, use gcd2 and
scm2.

A note on performance:
A very common solution to finding the GCD of a vector of values is to use Reduce() along with
a binary function like gcd2().
e.g. Reduce(gcd2, seq(5, 20, 5)).
This is exactly identical to gcd(seq(5, 20, 5)), with gcd() being much faster and overall
cheaper as it is written in C++ and heavily optimised. Therefore it is recommended to always
use gcd().
For example we can compare the two approaches below,
x <- seq(5L, length = 10^6, by = 5L)
bench::mark(Reduce(gcd2, x), gcd(x))
This example code shows gcd() being ~200x faster on my machine than the Reduce + gcd2
approach, even though gcd2 itself is written in C++ and has little overhead.

Value

A number representing the GCD or SCM.

get_breaks 13

Examples

library(cheapr)
library(bench)

Binary versions
gcd2(15, 25)
gcd2(15, seq(5, 25, 5))
scm2(15, seq(5, 25, 5))
scm2(15, 25)

GCD across a vector
gcd(c(0, 5, 25))
mark(gcd(c(0, 5, 25)))

x <- rnorm(10^5)
gcd(x)
gcd(x, round = FALSE)
mark(gcd(x))

get_breaks Pretty break-points for continuous (numeric) data

Description

The distances between break-points are always equal in this implementation.

Usage

get_breaks(x, n = 10, ...)

S3 method for class 'numeric'
get_breaks(
x,
n = 10,
pretty = TRUE,
expand_min = FALSE,
expand_max = TRUE,
...

)

S3 method for class 'integer64'
get_breaks(x, n = 10, ...)

Arguments

x A numeric vector.

n Number of breakpoints. You may get less or more than requested.

14 get_breaks

... Extra arguments passed onto methods.

pretty Should pretty break-points be prioritised? Default is TRUE. If FALSE bin-widths
will be calculated as diff(range(x)) / n.

expand_min Should smallest break be extended beyond the minimum of the data? Default is
FALSE. If TRUE then min(get_breaks(x)) is ensured to be less than min(x).

expand_max Should largest break be extended beyond the maximum of the data? Default is
TRUE. If TRUE then max(get_breaks(x)) is ensured to be greater than max(x).

Value

A numeric vector of break-points.

See Also

bin as_discrete

Examples

library(cheapr)

set.seed(123)
ages <- sample(0:80, 100, TRUE)

Pretty
get_breaks(ages, n = 10)
Not-pretty
bin-width is diff(range(ages)) / n_breaks
get_breaks(ages, n = 10, pretty = FALSE)

`get_breaks()` is left-biased in a sense, meaning that
the first break is always <= `min(x)` but the last break
may be < `max(x)`

To get right-biased breaks we can use a helper like so..

right_breaks <- function(x, ...){
-get_breaks(-x, ...)

}

get_breaks(4:24, 10)
right_breaks(4:24, 10)

Use `rev()` to ensure they are in ascending order
rev(right_breaks(4:24, 10))

is_na 15

is_na Efficient functions for dealing with missing values.

Description

is_na() is a parallelised alternative to is.na().
num_na(x) is a faster and more efficient sum(is.na(x)).
which_na(x) is a more efficient which(is.na(x))
which_not_na(x) is a more efficient which(!is.na(x))
row_na_counts(x) is a more efficient rowSums(is.na(x))
row_all_na() returns a logical vector indicating which rows are empty and have only NA values.
row_any_na() returns a logical vector indicating which rows have at least 1 NA value.
The col_ variants are the same, but operate by-column.

Usage

is_na(x)

Default S3 method:
is_na(x)

S3 method for class 'POSIXlt'
is_na(x)

S3 method for class 'vctrs_rcrd'
is_na(x)

S3 method for class 'data.frame'
is_na(x)

num_na(x, recursive = TRUE)

which_na(x)

which_not_na(x)

any_na(x, recursive = TRUE)

all_na(x, recursive = TRUE)

row_na_counts(x, names = FALSE)

col_na_counts(x, names = FALSE)

row_all_na(x, names = FALSE)

col_all_na(x, names = FALSE)

16 is_na

row_any_na(x, names = FALSE)

col_any_na(x, names = FALSE)

Arguments

x A vector, list, data frame or matrix.

recursive Should the function be applied recursively to lists? The default is TRUE. Set-
ting this to TRUE is actually much cheaper because when FALSE, the other NA
functions rely on calling is_na(), therefore allocating a vector. This is so that
alternative objects with is.na methods can be supported.

names Should row/col names be added?

Details

These functions are designed primarily for programmers, to increase the speed and memory-efficiency
of NA handling.
Most of these functions can be parallelised through options(cheapr.cores).

Common use-cases:
To replicate complete.cases(x), use !row_any_na(x).
To find rows with any empty values, use which_(row_any_na(df)).
To find empty rows use which_(row_all_na(df)) or which_na(df). To drop empty rows use
na_rm(df) or sset(df, which_(row_all_na(df), TRUE)).

is_na:
is_na Is an S3 generic function. It will internally fall back on using is.na if it can’t find a suitable
method. Alternatively you can write your own is_na method. For example there is a method for
vctrs_rcrd objects that simply converts it to a data frame and then calls row_all_na(). There
is also a POSIXlt method for is_na that is much faster than is.na.

Lists:
When x is a list, num_na, any_na and all_na will recursively search the list for NA values. If
recursive = F then is_na() is used to find NA values.
is_na differs to is.na in 2 ways:

• List elements are counted as NA if either that value is NA, or if it’s a list, then all values of that
list are NA.

• When called on a data frame, it returns TRUE for empty rows that contain only NA values.

Value

Number or location of NA values.

lag_ 17

Examples

library(cheapr)
library(bench)

x <- 1:10
x[c(1, 5, 10)] <- NA
num_na(x)
which_na(x)
which_not_na(x)

row_nas <- row_na_counts(airquality, names = TRUE)
col_nas <- col_na_counts(airquality, names = TRUE)
row_nas
col_nas

df <- sset(airquality, j = 1:2)

Number of NAs in data
num_na(df)
Which rows are empty?
row_na <- row_all_na(df)
sset(df, row_na)

Removing the empty rows
sset(df, which_(row_na, invert = TRUE))
Or
na_rm(df)
Or
sset(df, row_na_counts(df) < ncol(df))

lag_ Lagged operations.

Description

Fast lags and leads optionally using dynamic vectorised lags, ordering and run lengths.

Usage

lag_(x, n = 1L, fill = NULL, set = FALSE, recursive = TRUE)

lag2_(
x,
n = 1L,
order = NULL,
run_lengths = NULL,
fill = NULL,
recursive = TRUE

)

18 lag_

Arguments

x A vector or data frame.

n Number of lags. Negative values are accepted.
lag2_ accepts a vector of dynamic lags and leads which gets recycled to the
length of x.

fill Value used to fill first n values. Default is NA.

set Should x be updated by reference? If TRUE no copy is made and x is updated in
place. The default is FALSE.

recursive Should list elements be lagged as well? If TRUE, this is useful for data frames
and will return row lags. If FALSE this will return a plain lagged list.

order Optionally specify an ordering with which to apply the lags. This is useful for
example when applying lags chronologically using an unsorted time variable.

run_lengths Optional integer vector of run lengths that defines the size of each lag run. For
example, supplying c(5, 5) applies lags to the first 5 elements and then essen-
tially resets the bounds and applies lags to the next 5 elements as if they were an
entirely separate and standalone vector.
This is particularly useful in conjunction with the order argument to perform a
by-group lag. See the examples for details.

Details

For most applications, it is more efficient and recommended to use lag_(). For anything that
requires dynamic lags, lag by order of another variable, or by-group lags, one can use lag2_().
To do cyclic lags, see the examples below for an implementation.

lag2_:
lag2_ is a generalised form of lag_ that by default performs simple lags and leads.
It has 3 additional features but does not support updating by reference or long vectors.

These extra features include:

• n - This shares the same name as the n argument in lag_ for consistency. The difference is that
lag_ accepts a lag vector of length 1 whereas this accepts a vector of dynamic lags allowing
for flexible combinations of variable sized lags and leads. These are recycled to the length
of the data and will always align with the data, meaning that if you supply a custom order
argument, this ordering is applied both to x and the recycled lag vector n simultaneously.

• order - Apply lags in any order you wish. This can be useful for reverse order lags, lags
against unsorted time variables, and by-group lags.

• run_lengths - Specify the size of individual lag runs. For example, if you specify run_lengths
= c(3, 4, 2), this will apply your lags to the first 3 elements and then reset, applying lags
to the next 4 elements, to reset again and apply lags to the final 2 elements. Each time the
reset occurs, it treats each run length sized ’chunk’ as a unique and separate vector. See the
examples for a showcase.

Table of differences between lag_ and lag2_:

lag_ 19

Description lag_ lag2_
Lags Yes Yes
Leads Yes Yes

Long vector support Yes No
Lag by reference Yes No

Dynamic vectorised lags No Yes
Data frame row lags Yes Yes

Alternative order lags No Yes

Value

A lagged object the same size as x.

Examples

library(cheapr)
library(bench)

A use-case for data.table
Adding 0 because can't update ALTREP by reference
df <- data.frame(x = 1:10^5 + 0L)

Normal data frame lag
sset(lag_(df), 1:10)

Lag these behind by 3 rows
sset(lag_(df, 3, set = TRUE), 1:10)

df$x[1:10] # x variable was updated by reference!

The above can be used naturally in data.table to lag data
without any copies

To perform regular R row lags, just make sure set is `FALSE`

sset(lag_(as.data.frame(EuStockMarkets), 5), 1:10)

lag2_ is a generalised version of lag_ that allows
for much more complex lags

x <- 1:10

lag every 2nd element
lag2_(x, n = c(1, 0)) # lag vector is recycled

Explicit Lag(3) using a vector of lags
lags <- lag_sequence(length(x), 3, partial = FALSE)
lag2_(x, n = lags)

Alternating lags and leads
lag2_(x, c(1, -1))

20 lag_

Lag only the 3rd element
lags <- integer(length(x))
lags[3] <- 1L
lag2_(x, lags)

lag in descending order (same as a lead)

lag2_(x, order = 10:1)

lag that resets after index 5
lag2_(x, run_lengths = c(5, 5))

lag with a time index
years <- sample(2011:2020)
lag2_(x, order = order(years))

Example of how to do a cyclical lag
n <- length(x)

When k >= 0
k <- min(3, n)
lag2_(x, c(rep(-n + k, k), rep(k, n - k)))
When k < 0
k <- max(-3, -n)
lag2_(x, c(rep(k, n + k), rep(n + k, -k)))

As it turns out, we can do a grouped lag
by supplying group sizes as run lengths and group order as the order

set.seed(45)
g <- sample(c("a", "b"), 10, TRUE)

NOTE: collapse::flag will not work unless g is already sorted!
This is not an issue with lag2_()
collapse::flag(x, g = g)
lag2_(x, order = order(g), run_lengths = collapse::GRP(g)$group.sizes)

For production code, we can of course make
this more optimised by using collapse::radixorderv()
Which calculates the order and group sizes all at once

o <- collapse::radixorderv(g, group.sizes = TRUE)
lag2_(x, order = o, run_lengths = attr(o, "group.sizes"))

Let's finally wrap this up in a nice grouped-lag function

grouped_lag <- function(x, n = 1, g = integer(length(x))){
o <- collapse::radixorderv(g, group.sizes = TRUE, sort = FALSE)
lag2_(x, n, order = o, run_lengths = attr(o, "group.sizes"))

}

And voila!

lengths_ 21

grouped_lag(x, g = g)

A method to extract this information from dplyr

We can actually get this information easily from a `grouped_df` object
Uncomment the below code to run the implementation
library(dplyr)
library(timeplyr)
eu_stock <- EuStockMarkets |>
ts_as_tibble() |>
group_by(stock_index = group)
groups <- group_data(eu_stock) # Group information
group_order <- unlist(groups$.rows) # Order of groups
group_sizes <- lengths_(groups$.rows) # Group sizes
#
by-stock index lag
lag2_(eu_stock$value, order = group_order, run_lengths = group_sizes)
#
Verifying this output is correct
eu_stock |>
ungroup() |>
mutate(lag1 = lag_(value), .by = stock_index) |>
mutate(lag2 = lag2_(value, order = group_order, run_lengths = group_sizes)) |>
summarise(lags_are_equal = identical(lag1, lag2))

Let's compare this to data.table

library(data.table)
default_threads <- getDTthreads()
setDTthreads(1)
dt <- data.table(x = 1:10^5,

g = sample.int(10^4, 10^5, TRUE))

bench::mark(dt[, y := shift(x), by = g][][["y"]],
grouped_lag(dt$x, g = dt$g),
iterations = 10)

setDTthreads(default_threads)

lengths_ List utilities

Description

Functions to help work with lists.

Usage

lengths_(x, names = FALSE)

unlisted_length(x)

22 named_list

new_list(length = 0L, default = NULL)

Arguments

x A list.

names Should names of list elements be added? Default is FALSE.

length Length of list.

default Default value for each list element.

Value

lengths_() returns the list lengths.
unlisted_length() is an alternative to length(unlist(x)).
new_list() is like vector("list", length) but also allows you to specify a default value for
each list element. This can be useful for initialising with a catch-all value so that when you unlist
you’re guaranteed a list of length >= to the specified length.

Examples

library(cheapr)
l <- list(1:10,

NULL,
list(integer(), NA_integer_, 2:10))

lengths_(l) # Faster lengths()
unlisted_length(l) # length of vector if we unlist
paste0("length: ", length(print(unlist(l))))

unlisted_length(l) - na_count(l) # Number of non-NA elements

We can create and initialise a new list with a default value
l <- new_list(20, 0L)
l[1:5]
This works well with vctrs_list_of objects

named_list Turn dot-dot-dot (...) into a named list

Description

A fast and useful function for always returning a named list from ...

Usage

named_list(..., .keep_null = TRUE)

new_df 23

Arguments

... Key-value pairs.

.keep_null Should NULL entries be kept? Default is TRUE.

Value

A named list.

new_df Fast data frame constructor

Description

Fast data frame constructor

Usage

new_df(..., .nrows = NULL, .recycle = FALSE, .name_repair = FALSE)

Arguments

... Key-value pairs.

.nrows integer(1) (Optional) number of rows.
Commonly used to initialise a 0-column data frame with rows.

.recycle logical(1) Should arguments be recycled? Default is FALSE.

.name_repair logical(1) Should duplicate names be made unique? Default is FALSE.

Value

A data.frame

overview An alternative to summary() inspired by the skimr package

Description

A cheaper summary() function, designed for larger data.

24 overview

Usage

overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

Default S3 method:
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'logical'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'integer'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'numeric'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'integer64'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'character'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'factor'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'Date'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'POSIXt'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'ts'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'zoo'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

S3 method for class 'data.frame'
overview(x, hist = TRUE, digits = getOption("cheapr.digits", 2))

Arguments

x A vector or data frame.

hist Should in-line histograms be returned? Default is FALSE.

digits How many decimal places should the summary statistics be printed as? Default
is 2.

recycle 25

Details

No rounding of statistics is done except in printing which can be controlled either through the
digits argument in overview(), or by setting the option options(cheapr.digits).
To access the underlying data, for example the numeric summary, just use $numeric, e.g. overview(rnorm(30))$numeric.

Value

An object of class "overview". Under the hood this is just a list of data frames. Key summary
statistics are reported in each data frame.

Examples

library(cheapr)
overview(iris)

With histograms
overview(airquality, hist = TRUE)

Round to 0 decimal places
overview(airquality, digits = 0)

We can set an option for all overviews
options(cheapr.digits = 1)
overview(rnorm(100))
options(cheapr.digits = 2) # The default

recycle Recycle objects to a common size

Description

A convenience function to recycle R objects to either a common or specified size.

Usage

recycle(..., length = NULL)

Arguments

... Objects to recycle.

length Optional length to recycle objects to.

Details

Data frames are recycled by recycling their rows.
recycle() is optimised to only recycle objects that need recycling.
NULL objects are ignored and not recycled or returned.

26 sequence_

Value

A list of recycled R objects.

Examples

library(cheapr)

recycle(Sys.Date(), 1:10)

Any vectors of zero-length are all recycled to zero-length
recycle(integer(), 1:10)

Data frame rows are recycled
recycle(sset(iris, 1:3), length = 3 * 3)

To recycle list items, use `do.call()`
my_list <- list(from = 1L, to = 10L, by = seq(0.1, 1, 0.1))
do.call(recycle, my_list)

sequence_ Utilities for creating many sequences

Description

sequence_ is an extension to sequence which accepts decimal number increments.
seq_id can be paired with sequence_ to group individual sequences.
seq_ is a vectorised version of seq.
window_sequence creates a vector of window sizes for rolling calculations.
lag_sequence creates a vector of lags for rolling calculations.
lead_sequence creates a vector of leads for rolling calculations.

Usage

sequence_(size, from = 1L, by = 1L, add_id = FALSE)

seq_id(size)

seq_(from = 1L, to = 1L, by = 1L, add_id = FALSE)

seq_size(from, to, by = 1L)

window_sequence(size, k, partial = TRUE, ascending = TRUE, add_id = FALSE)

lag_sequence(size, k, partial = TRUE, add_id = FALSE)

lead_sequence(size, k, partial = TRUE, add_id = FALSE)

sequence_ 27

Arguments

size Vector of sequence lengths.

from Start of sequence(s).

by Unit increment of sequence(s).

add_id Should the ID numbers of the sequences be added as names? Default is FALSE.

to End of sequence(s).

k Window/lag size.

partial Should partial windows/lags be returned? Default is TRUE.

ascending Should window sequence be ascending? Default is TRUE.

Details

sequence_() works in the same way as sequence() but can accept non-integer by values. It also
recycles from and to, in the same way as sequence().
If any of the sequences contain values > .Machine$integer.max, then the result will always be a
double vector.

from can be also be a date, date-time, or any object that supports addition and multiplication.

seq_() is a vectorised version of seq() that strictly accepts only the arguments from, to and by.

Value

A vector of length sum(size) except for seq_ which returns a vector of size sum((to - from) /
(by + 1))

Examples

library(cheapr)
sequence(1:3)
sequence_(1:3)

sequence(1:3, by = 0.1)
sequence_(1:3, by = 0.1)

Add IDs to the sequences
sequence_(1:3, by = 0.1, add_id = TRUE)
Turn this quickly into a data frame
enframe_(sequence_(1:3, by = 0.1, add_id = TRUE))

sequence(c(3, 2), by = c(-0.1, 0.1))
sequence_(c(3, 2), by = c(-0.1, 0.1))

Vectorised version of seq()
seq_(1, 10, by = c(1, 0.5))
Same as below
c(seq(1, 10, 1), seq(1, 10, 0.5))

28 setdiff_

Programmers may use seq_size() to determine final sequence lengths

sizes <- seq_size(1, 10, by = c(1, 0.5))
print(paste(c("sequence sizes: (", sizes, ") total size:", sum(sizes)),

collapse = " "))

We can group sequences using seq_id

from <- Sys.Date()
to <- from + 10
by <- c(1, 2, 3)
x <- seq_(from, to, by, add_id = TRUE)
class(x) <- "Date"
x

Utilities for rolling calculations

window_sequence(c(3, 5), 3)
window_sequence(c(3, 5), 3, partial = FALSE)
window_sequence(c(3, 5), 3, partial = TRUE, ascending = FALSE)
One can for example use these in data.table::frollsum

setdiff_ Extra utilities

Description

Extra utilities

Usage

setdiff_(x, y, dups = TRUE)

intersect_(x, y, dups = TRUE)

cut_numeric(
x,
breaks,
labels = NULL,
include.lowest = FALSE,
right = TRUE,
dig.lab = 3L,
ordered_result = FALSE,
...

)

x %in_% table

setdiff_ 29

x %!in_% table

enframe_(x, name = "name", value = "value")

deframe_(x)

sample_(x, size = vector_length(x), replace = FALSE, prob = NULL)

val_insert(x, value, n = NULL, prop = NULL)

na_insert(x, n = NULL, prop = NULL)

vector_length(x)

cheapr_var(x, na.rm = TRUE)

cheapr_rev(x)

with_local_seed(expr, .seed = NULL, ...)

Arguments

x A vector or data frame.
y A vector or data frame.
dups Should duplicates be kept? Default is TRUE.
breaks See ?cut.
labels See ?cut.
include.lowest See ?cut.
right See ?cut.
dig.lab See ?cut.
ordered_result See ?cut.
... Further arguments passed onto cut or set.seed.
table See ?collapse::fmatch

name The column name to assign the names of a vector.
value The column name to assign the values of a vector.
size See ?sample.
replace See ?sample.
prob See ?sample.
n Number of scalar values (or NA) to insert randomly into your vector.
prop Proportion of scalar values (or NA) values to insert randomly into your vector.
na.rm Should NA values be ignored in cheapr_var() Default is TRUE.
expr Expression that will be evaluated with a local seed that is independent and has

absolutely no effect on the global RNG state.
.seed A local seed to set which is only used inside with_local_seed(). After the

execution of the expression the original seed is reset.

30 setdiff_

Value
enframe()_ converts a vector to a data frame.
deframe()_ converts a 1-2 column data frame to a vector.
intersect_() returns a vector of common values between x and y.
setdiff_() returns a vector of values in x but not y.
cut_numeric() places values of a numeric vector into buckets, defined through the breaks argu-
ment and returns a factor unless labels = FALSE, in which case an integer vector of break indices
is returned.
%in_% and %!in_% both return a logical vector signifying if the values of x exist or don’t exist in
table respectively.
sample_() is an alternative to sample() that natively samples data frame rows through sset(). It
also does not have a special case when length(x) is 1.
val_insert inserts scalar values randomly into your vector. Useful for replacing lots of data with
a single value.
na_insert inserts NA values randomly into your vector. Useful for generating missing data.
vector_length behaves mostly like NROW() except for matrices in which it matches length().
cheapr_var returns the variance of a numeric vector. No coercion happens for integer vectors and
so is very cheap.
cheapr_rev is a much cheaper version of rev().
with_local_seed offers no speed improvements but is extremely handy in executing random num-
ber based expressions like rnorm() without affecting the global RNG state. It allows you to run
these expressions in a sort of independent ’container’ and with an optional seed for that ’container’
for reproducibility. The rationale for including this in ’cheapr’ is that it can reduce the need to set
many seed values, especially for multiple output comparisons of RNG expressions. Another way of
thinking about it is that with_local_seed() is a helper that allows you to write reproducible code
without side-effects, which traditionally cannot be avoided when calling set.seed() directly.

Examples

library(cheapr)

Using `with_local_seed()`

The below 2 statements are equivalent

Statement 1
set.seed(123456789)
res <- rnorm(10)

Statement 2
res2 <- with_local_seed(rnorm(10), .seed = 123456789)

They are the same
identical(res, res2)

As an example we can see that the RNG is unaffected by generating
random uniform deviates in batches between calls to `with_local_seed()`
and comparing to the first result

set.seed(123456789)

set_abs 31

batch1 <- rnorm(2)

with_local_seed(runif(10))
batch2 <- rnorm(2)
with_local_seed(runif(10))
batch3 <- rnorm(1)
with_local_seed(runif(10))
batch4 <- rnorm(5)

Combining the batches produces the same result
therefore `with_local_seed` did not interrupt the rng sequence
identical(c(batch1, batch2, batch3, batch4), res)

It can be useful in multiple comparisons
out1 <- with_local_seed(rnorm(5))
out2 <- with_local_seed(rnorm(5))
out3 <- with_local_seed(rnorm(5))

identical(out1, out2)
identical(out1, out3)

set_abs Math operations by reference - Experimental

Description

These functions transform your variable by reference, with no copies being made. It is advisable to
only use these if you know what you are doing.

Usage

set_abs(x)

set_floor(x)

set_ceiling(x)

set_trunc(x)

set_exp(x)

set_sqrt(x)

set_change_sign(x)

set_round(x, digits = 0)

set_log(x, base = exp(1))

32 set_abs

set_pow(x, y)

set_add(x, y)

set_subtract(x, y)

set_multiply(x, y)

set_divide(x, y)

Arguments

x A numeric vector.

digits Number of digits to round to.

base Logarithm base.

y A numeric vector.

Details

These functions are particularly useful for situations where you have made a copy and then wish to
perform further operations without creating more copies.
NA and NaN values are ignored though in some instances NaN values may be replaced with NA. These
functions will not work on any classed objects, meaning they only work on standard integer and
numeric vectors and matrices.

When a copy has to be made:
A copy is only made in certain instances, e.g. when passing an integer vector to set_log(). A
warning will always be thrown in this instance alerting the user to assign the output to an object
because x has not been updated by reference.
To ensure consistent and expected outputs, always assign the output to the same object,
e.g. x <- set_log(x) (do this)
set_log(x) (don’t do this)
x2 <- set_log(x) (Don’t do this either)

No copy is made here unless x is an integer vector.

Value

The exact same object with no copy made, just transformed.

Examples

library(cheapr)
library(bench)

x <- rnorm(2e05)
options(cheapr.cores = 2)

sset 33

mark(
base = exp(log(abs(x))),
cheapr = set_exp(set_log(set_abs(x)))

)
options(cheapr.cores = 1)

sset Cheaper subset

Description

Cheaper alternative to [that consistently subsets data frame rows, always returning a data frame.
There are explicit methods for enhanced data frames like tibbles, data.tables and sf.

Usage

sset(x, ...)

S3 method for class 'Date'
sset(x, i, ...)

S3 method for class 'POSIXct'
sset(x, i, ...)

S3 method for class 'factor'
sset(x, i, ...)

S3 method for class 'data.frame'
sset(x, i, j, ...)

S3 method for class 'tbl_df'
sset(x, i, j, ...)

S3 method for class 'POSIXlt'
sset(x, i, j, ...)

S3 method for class 'data.table'
sset(x, i, j, ...)

S3 method for class 'sf'
sset(x, i, j, ...)

Arguments

x Vector or data frame.

... Further parameters passed to [.

34 sset

i A logical or vector of indices.

j Column indices, names or logical vector.

Details

sset is an S3 generic. You can either write methods for sset or [.
sset will fall back on using [when no suitable method is found.

To get into more detail, using sset() on a data frame, a new list is always allocated through
new_list().

Difference to base R:
When i is a logical vector, it is passed directly to which_().
This means that NA values are ignored and this also means that i is not recycled, so it is good
practice to make sure the logical vector matches the length of x. To return NA values, use sset(x,
NA_integer_).

ALTREP range subsetting:
When i is an ALTREP compact sequence which can be commonly created using e.g. 1:10 or
using seq_len, seq_along and seq.int, sset internally uses a range-based subsetting method
which is faster and doesn’t allocate i into memory.

Value

A new vector, data frame, list, matrix or other R object.

Examples

library(cheapr)
library(bench)

Selecting columns
sset(airquality, j = "Temp")
sset(airquality, j = 1:2)

Selecting rows
sset(iris, 1:5)

Rows and columns
sset(iris, 1:5, 1:5)
sset(iris, iris$Sepal.Length > 7, c("Species", "Sepal.Length"))

Comparison against base
x <- rnorm(10^4)

mark(x[1:10^3], sset(x, 1:10^3))
mark(x[x > 0], sset(x, x > 0))

df <- data.frame(x = x)

mark(df[df$x > 0, , drop = FALSE],

val_count 35

sset(df, df$x > 0),
check = FALSE) # Row names are different

EXTRA: An easy way to incorporate cheapr into dplyr's filter()
cheapr_filter <- function(.data, ..., .by = NULL, .preserve = FALSE){
filter_df <- .data |>
dplyr::mutate(..., .by = {{ .by }}, .keep = "none")
groups <- dplyr::group_vars(filter_df)
filter_df <- cheapr::sset(filter_df, j = setdiff(names(filter_df), groups))
n_filters <- ncol(filter_df)
if (n_filters < 1){
.data
} else {
dplyr::dplyr_row_slice(.data, cheapr::which_(Reduce(`&`, filter_df)),
preserve = .preserve)
}
}

val_count Efficient functions for counting, finding, replacing and removing
scalars

Description

These are primarily intended as very fast scalar-based functions for developers. They are particu-
larly useful for working with NA values in a fast and efficient manner.

Usage

val_count(x, value, recursive = TRUE)

count_val(x, value, recursive = TRUE)

val_find(x, value, invert = FALSE)

which_val(x, value, invert = FALSE)

val_replace(x, value, replace, recursive = TRUE)

na_replace(x, replace, recursive = TRUE)

val_rm(x, value)

na_count(x, recursive = TRUE)

na_find(x, invert = FALSE)

na_rm(x)

36 val_count

Arguments

x A vector, list, data frame or matrix.
value A scalar value to count, find, replace or remove.
recursive Should values in a list be counted or replaced recursively? Default is TRUE and

very useful for data frames.
invert Should which_val find locations of everything except specified value? Default

is FALSE.
replace Replacement scalar value.

Details

The val_ functions allow you to very efficiently work with scalars, i.e length 1 vectors. Many
common common operations like counting the occurrence of NA or zeros, e.g. sum(x == 0) or
sum(is.na(x)) can be replaced more efficiently with val_count(x, 0) and na_count(x) respec-
tively.
At the moment these functions only work for integer, double and character vectors with the excep-
tion of the NA functions. They are intended mainly for developers who wish to write cheaper code
and reduce expensive vector operations.

• val_count() - Counts occurrences of a value
• val_find() Finds locations (indices) of a value
• val_replace() - Replaces value with another value
• val_rm() - Removes occurrences of value from an object

There are NA equivalent convenience functions.

• na_count() == val_count(x, NA)

• na_find() == val_find(x, NA)

• na_replace() == val_replace(x, NA)

• na_rm() == val_rm(x, NA)

val_count() and val_replace() can work recursively. For example, when applied to a data
frame, na_replace will replace NA values across the entire data frame with the specified replace-
ment value.
In ’cheapr’ function-naming conventions have not been consistent but going forward all scalar func-
tions (including the NA convenience functions) will be prefixed with ’val_’ and ’na_’ respectively.
Functions named with the older naming scheme like which_na may be removed at some point in
the future.

Value

val_count() returns the number of times a scalar value appears in a vector or list.
val_find() returns the index locations of that scalar value.
val_replace() replaces a specified scalar value with a replacement scalar value. If no instances of
said value are found then the input x is returned as is.
na_replace() is a convenience function equivalent to val_replace(x, NA, ...).
val_rm() removes all instances of a specified scalar value. If no instances are found, the original
input x is returned as is.

which_ 37

which_ Memory-efficient alternative to which()

Description

Exactly the same as which() but more memory efficient.

Usage

which_(x, invert = FALSE)

Arguments

x A logical vector.

invert If TRUE, indices of values that are not TRUE are returned (including NA). If FALSE
(the default), only TRUE indices are returned.

Details

This implementation is similar in speed to which() but usually more memory efficient.

Value

An unnamed integer vector.

Examples

library(cheapr)
library(bench)
x <- sample(c(TRUE, FALSE), 1e05, TRUE)
x[sample.int(1e05, round(1e05/3))] <- NA

mark(which_(TRUE), which(TRUE))
mark(which_(FALSE), which(FALSE))
mark(which_(logical()), which(logical()))
mark(which_(x), which(x), iterations = 20)
mark(base = which(is.na(match(x, TRUE))),

collapse = collapse::whichv(x, TRUE, invert = TRUE),
cheapr = which_(x, invert = TRUE),
iterations = 20)

Index

%!in_% (setdiff_), 28
%in_% (setdiff_), 28

all_na (is_na), 15
any_na (is_na), 15
as_discrete, 3, 6, 14
as_factor (factor_), 8

bin, 4, 5, 14

case, 6, 8
cheapr (cheapr-package), 2
cheapr-package, 2
cheapr_if_else, 7, 7
cheapr_rev (setdiff_), 28
cheapr_var (setdiff_), 28
col_all_na (is_na), 15
col_any_na (is_na), 15
col_na_counts (is_na), 15
count_val (val_count), 35
cut_numeric (setdiff_), 28

deframe_ (setdiff_), 28

enframe_ (setdiff_), 28

factor_, 8

gcd, 11
gcd2 (gcd), 11
get_breaks, 4, 6, 13

intersect_ (setdiff_), 28
is_na, 15

lag2_ (lag_), 17
lag_, 17
lag_sequence (sequence_), 26
lead_sequence (sequence_), 26
lengths_, 21
levels_add (factor_), 8

levels_add_na (factor_), 8
levels_count (factor_), 8
levels_drop (factor_), 8
levels_drop_na (factor_), 8
levels_factor (factor_), 8
levels_lump (factor_), 8
levels_rename (factor_), 8
levels_reorder (factor_), 8
levels_rm (factor_), 8
levels_unused (factor_), 8
levels_used (factor_), 8
logical, 8, 37

na_count (val_count), 35
na_find (val_count), 35
na_insert (setdiff_), 28
na_replace (val_count), 35
na_rm (val_count), 35
named_list, 22
new_df, 23
new_list (lengths_), 21
num_na (is_na), 15
numeric, 11, 12

overview, 23

recycle, 25
row_all_na (is_na), 15
row_any_na (is_na), 15
row_na_counts (is_na), 15

sample_ (setdiff_), 28
scm (gcd), 11
scm2 (gcd), 11
seq, 26
seq_ (sequence_), 26
seq_id (sequence_), 26
seq_size (sequence_), 26
sequence, 26
sequence_, 26

38

INDEX 39

set_abs, 31
set_add (set_abs), 31
set_ceiling (set_abs), 31
set_change_sign (set_abs), 31
set_divide (set_abs), 31
set_exp (set_abs), 31
set_floor (set_abs), 31
set_log (set_abs), 31
set_multiply (set_abs), 31
set_pow (set_abs), 31
set_round (set_abs), 31
set_sqrt (set_abs), 31
set_subtract (set_abs), 31
set_trunc (set_abs), 31
setdiff_, 28
sset, 33

unlisted_length (lengths_), 21
unused_levels (factor_), 8
used_levels (factor_), 8

val_count, 35
val_find (val_count), 35
val_insert (setdiff_), 28
val_match, 8
val_match (case), 6
val_replace (val_count), 35
val_rm (val_count), 35
vector_length (setdiff_), 28

which_, 37
which_na (is_na), 15
which_not_na (is_na), 15
which_val (val_count), 35
window_sequence (sequence_), 26
with_local_seed (setdiff_), 28

	cheapr-package
	as_discrete
	bin
	case
	cheapr_if_else
	factor_
	gcd
	get_breaks
	is_na
	lag_
	lengths_
	named_list
	new_df
	overview
	recycle
	sequence_
	setdiff_
	set_abs
	sset
	val_count
	which_
	Index

